Sequence analysis EPGA: de novo assembly using the distributions of reads and insert size
نویسندگان
چکیده
Motivation: In genome assembly, the primary issue is how to determine upstream and downstream sequence regions of sequence seeds for constructing long contigs or scaffolds. When extending one sequence seed, repetitive regions in the genome always cause multiple feasible extension candidates which increase the difficulty of genome assembly. The universally accepted solution is choosing one based on read overlaps and paired-end (mate-pair) reads. However, this solution faces difficulties with regard to some complex repetitive regions. In addition, sequencing errors may produce false repetitive regions and uneven sequencing depth leads some sequence regions to have too few or too many reads. All the aforementioned problems prohibit existing assemblers from getting satisfactory assembly results. Results: In this article, we develop an algorithm, called extract paths for genome assembly (EPGA), which extracts paths from De Bruijn graph for genome assembly. EPGA uses a new score function to evaluate extension candidates based on the distributions of reads and insert size. The distribution of reads can solve problems caused by sequencing errors and short repetitive regions. Through assessing the variation of the distribution of insert size, EPGA can solve problems introduced by some complex repetitive regions. For solving uneven sequencing depth, EPGA uses relative mapping to evaluate extension candidates. On real datasets, we compare the performance of EPGA and other popular assemblers. The experimental results demonstrate that EPGA can effectively obtain longer and more accurate contigs and scaffolds. Availability and implementation: EPGA is publicly available for download at https://github.com/ bioinfomaticsCSU/EPGA. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
منابع مشابه
EPGA: de novo assembly using the distributions of reads and insert size
MOTIVATION In genome assembly, the primary issue is how to determine upstream and downstream sequence regions of sequence seeds for constructing long contigs or scaffolds. When extending one sequence seed, repetitive regions in the genome always cause multiple feasible extension candidates which increase the difficulty of genome assembly. The universally accepted solution is choosing one based ...
متن کاملClustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کاملExploring genome characteristics and sequence quality without a reference
MOTIVATION The de novo assembly of large, complex genomes is a significant challenge with currently available DNA sequencing technology. While many de novo assembly software packages are available, comparatively little attention has been paid to assisting the user with the assembly. RESULTS This article addresses the practical aspects of de novo assembly by introducing new ways to perform qua...
متن کاملA consistency-based consensus algorithm for de novo and reference-guided sequence assembly of short reads
MOTIVATION Novel high-throughput sequencing technologies pose new algorithmic challenges in handling massive amounts of short-read, high-coverage data. A robust and versatile consensus tool is of particular interest for such data since a sound multi-read alignment is a prerequisite for variation analyses, accurate genome assemblies and insert sequencing. RESULTS A multi-read alignment algorit...
متن کاملPaired-End Sequencing of Long-Range DNA Fragments for De Novo Assembly of Large, Complex Mammalian Genomes by Direct Intra-Molecule Ligation
BACKGROUND The relatively short read lengths from next generation sequencing (NGS) technologies still pose a challenge for de novo assembly of complex mammal genomes. One important solution is to use paired-end (PE) sequence information experimentally obtained from long-range DNA fragments (>1 kb). Here, we characterize and extend a long-range PE library construction method based on direct intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015